Our trails and trials in the subsarcolemmal cytoskeleton network and muscular dystrophy researches in the dystrophin era

نویسنده

  • Eijiro OZAWA
چکیده

In 1987, about 150 years after the discovery of Duchenne muscular dystrophy (DMD), its responsible gene, the dystrophin gene, was cloned by Kunkel. This was a new substance. During these 20 odd years after the cloning, our understanding on dystrophin as a component of the subsarcolemmal cytoskeleton networks and on the pathomechanisms of and experimental therapeutics for DMD has been greatly enhanced. During this paradigm change, I was fortunately able to work as an active researcher on its frontiers for 12 years. After we discovered that dystrophin is located on the cell membrane in 1988, we studied the architecture of dystrophin and dystrophin-associated proteins (DAPs) complex in order to investigate the function of dystrophin and pathomechanism of DMD. During the conduct of these studies, we came to consider that the dystrophin-DAP complex serves to transmembranously connect the subsarcolemmal cytoskeleton networks and basal lamina to protect the lipid bilayer. It then became our working hypothesis that injury of the lipid bilayer upon muscle contraction is the cause of DMD. During this process, we predicted that subunits of the sarcoglycan (SG) complex are responsible for respective types of DMD-like muscular dystrophy with autosomal recessive inheritance. Our prediction was confirmed to be true by many researchers including ourselves. In this review, I will try to explain what we observed and how we considered concerning the architecture and function of the dystrophin-DAP complex, and the pathomechanisms of DMD and related muscular dystrophies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...

متن کامل

Deficiency of dystrophin-associated proteins in Duchenne muscular dystrophy patients lacking COOH-terminal domains of dystrophin.

Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene, is a cytoskeletal protein tightly associated with a large oligomeric complex of sarcolemmal glycoproteins including dystroglycan, which provides a linkage to the extracellular matrix component, laminin. In DMD, the absence of dystrophin leads to a drastic reduction in all of the dystrophin-associated proteins, causin...

متن کامل

Three Muscular Dystrophies: Review Loss of Cytoskeleton-Extracellular Matrix Linkage

Muscular dystrophies are a group of diseases that primarily affect skeletal muscle and are characterized by progressive muscle wasting and weakness. Although these diseases have been clinically recognized for a number of years, genetic defects in a number of muscular dystrophies have only recently been identified. One of the most important advances in understanding the molecular genetics of neu...

متن کامل

The Diagnostic Value of Utrophin in Mild Dystrophinopathy (Becker Muscular Dystrophy)

  Background and Objective: Becker Muscular Dystrophy (BMD) is a subtype of dystrophinopathies and designated as “mild form of dystrophinopathy”. The frequency rate of the disease is 1:18000 to 1:30000 in different populations and the symptoms are presented at about 8-9 years of age. The diagnostic panel composed of Serum Ceratin Kinase (SCK) measurement, Electromyography (EMG), and as a major...

متن کامل

Sarcoplasmic reticulum Ca permeation explored from the lumen side in mdx muscle fibers under voltage control

Duchenne muscular dystrophy is a very severe muscle disease that is characterized by progressive skeletal muscle wasting. Duchenne muscular dystrophy is provoked by mutations in the gene encoding the protein dystrophin, which lead to the total absence of this protein in skeletal muscles. In normal skeletal muscle, dystrophin is located underneath the sarcolemma, and interacts with the F-actin c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2010